
Winter Contest 2024 Presentation of Solutions

The Winter Contest Jury
January 29, 2024

Winter Contest 2024 Jury

• Philipp Fischbeck
Hasso-Plattner-Institute Potsdam

• Rudolf Fleischer
Heinrich-Heine-University Düsseldorf, CPUlm

• Brutenis Gliwa
University of Rostock

• Niko Hastrich
Hasso-Plattner-Institute Potsdam

• Florian Kothmeier
Friedrich-Alexander University
Erlangen-Nürnberg

• Felicia Lucke
Fribourg University CH, CPUlm

• Jannik Olbrich
Ulm University, CPUlm

• Erik Sünderhauf
Technical University of Munich

• Christopher Weyand
Karlsruhe Institute of Technology, CPUlm

• Paul Wild
Friedrich-Alexander University
Erlangen-Nürnberg, CPUlm

• Wendy Yi
Karlsruhe Institute of Technology

• Michael Zündorf
Karlsruhe Institute of Technology, CPUlm

Winter Contest 2024 Test Solvers

• Sebastian Angrick
Hasso-Plattner-Institute Potsdam

• Michael Ruderer
Augsburg University, CPUlm

• Jonas Schmidt
Hasso-Plattner-Institute Potsdam

Winter Contest 2024 Technical Team

• Nathan Maier
CPUlm

• Alexander Schmid
CPUlm

• Pascal Weber
University of Vienna, CPUlm

A: Alphabetical Athletes
Problem Author: Felicia Lucke

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70 correct
wrong-answer
timelimit
run-error
pending

A: Alphabetical Athletes
Problem Author: Felicia Lucke

Problem
Given a German word, check if its letters are lexicographically sorted (increasing or decreasing).

Solution

• Sort the word and check if it is equal to the input or the reversed input.

Possible Pitfalls

• The first letter may be capitalized.
• Reversed alphabetical order is considered sorted.
• Did not test all samples.

A: Alphabetical Athletes
Problem Author: Felicia Lucke

Problem
Given a German word, check if its letters are lexicographically sorted (increasing or decreasing).

Solution

• Sort the word and check if it is equal to the input or the reversed input.

Possible Pitfalls

• The first letter may be capitalized.
• Reversed alphabetical order is considered sorted.
• Did not test all samples.

A: Alphabetical Athletes
Problem Author: Felicia Lucke

Problem
Given a German word, check if its letters are lexicographically sorted (increasing or decreasing).

Solution

• Sort the word and check if it is equal to the input or the reversed input.

Possible Pitfalls

• The first letter may be capitalized.
• Reversed alphabetical order is considered sorted.
• Did not test all samples.

B: Bright Beacons
Problem Author: Brutenis Gliwa

0 50 100 150 200 250 300
0

2

4

6

8

10

12
correct

wrong-answer
timelimit
run-error
pending

B: Bright Beacons
Problem Author: Brutenis Gliwa

Problem
Given a grid of mountain heights, what is the shortest path from the top-left to the bottom-right
when adjacency is determined by line-of-sight between mountains?

Solution

• Compute line of sight function f (x) : ax + b for each pair of mountains along the same row or
column (f (x) crosses both peaks).

• There is no line of sight if any mountain in between is higher than f (x) at that position.
• Create a graph: each mountain is a node, add edge between mountains if there is a line of sight.
• Traverse graph with breadth-first-search.

B: Bright Beacons
Problem Author: Brutenis Gliwa

Problem
Given a grid of mountain heights, what is the shortest path from the top-left to the bottom-right
when adjacency is determined by line-of-sight between mountains?

Solution

• Compute line of sight function f (x) : ax + b for each pair of mountains along the same row or
column (f (x) crosses both peaks).

• There is no line of sight if any mountain in between is higher than f (x) at that position.
• Create a graph: each mountain is a node, add edge between mountains if there is a line of sight.
• Traverse graph with breadth-first-search.

C: Chess Challenge
Problem Author: Wendy Yi

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
correct

wrong-answer
timelimit
run-error
pending

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.

• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack

2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook

3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

C: Chess Challenge
Problem Author: Wendy Yi

Problem
There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

• It is possible if and only if total number of allowed moves ≥ r − 1.
• If a rook with 0 moves left can be captured by a neighbour, capturing it does not change

solvability.

Solution

• Check total number of moves.
• Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

• If no rooks with 0 moves left, repeatedly capture leftmost rook.

D: Devious Dates
Problem Author: Jannik Olbrich

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
pending

D: Devious Dates
Problem Author: Jannik Olbrich

Problem
Given three integers a, m and k. Find k distinct pairs of integers (ai , mi), such that for each i there
are xi , yi such that

a = ai + xi · mi

a + m = ai + yi · mi

Solution

• From subtracting the two equations, we know that mi must divide (a + m) − a = m.
• Once mi is known, the smallest ai is a mod mi .
• Two schedules (ai , mi), (aj , mj) are different iff mi ̸= mj .

=⇒ There are exactly as many different schedules as there are divisors of m.
=⇒ Find all divisors of m, print “impossible” if there are fewer than k, otherwise choose k
divisors as mi ’s (whose lcm is m) and print them.

• Time complexity: O(
√

m)

D: Devious Dates
Problem Author: Jannik Olbrich

Problem
Given three integers a, m and k. Find k distinct pairs of integers (ai , mi), such that for each i there
are xi , yi such that

a = ai + xi · mi

a + m = ai + yi · mi

Solution

• From subtracting the two equations, we know that mi must divide (a + m) − a = m.
• Once mi is known, the smallest ai is a mod mi .
• Two schedules (ai , mi), (aj , mj) are different iff mi ̸= mj .

=⇒ There are exactly as many different schedules as there are divisors of m.
=⇒ Find all divisors of m, print “impossible” if there are fewer than k, otherwise choose k
divisors as mi ’s (whose lcm is m) and print them.

• Time complexity: O(
√

m)

E: Euroexpress
Problem Author: Michael Zündorf

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
correct

wrong-answer
timelimit
run-error
pending

E: Euroexpress
Problem Author: Michael Zündorf

Problem
Given n rectangles (wi , hi), find the largest box where each side can be covered by one of the
rectangles.

3 d
m

3 dm

8
d
m

4 dm

4
d
m

E: Euroexpress
Problem Author: Michael Zündorf

Solution

• All sides of the largest box can always be covered with the same rectangle.
• For a given rectangle, the largest box has size w × h × min(w , h).
• Try all rectangles and take the maximum over all.
⇒ Runtime: O(n)

F: Football Figurines
Problem Author: Rudolf Fleischer

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
correct

wrong-answer
timelimit
run-error
pending

F: Football Figurines
Problem Author: Rudolf Fleischer

Problem

• Given are n floors where stairs go either one or two levels up, and m queries that consist of two
floors each.

• For each query, compute the total number of staircases used on all possible different routes
between the two queried floors modulo 109 + 7.

Solution

• The number of routes to climb up k floors is the kth Fibonacci number Fk .
• The total number of staircases used is Lk = Lk−1 + Lk−2 + Fk , where L0 = 0 and L1 = 1.

F: Football Figurines
Problem Author: Rudolf Fleischer

Problem

• Given are n floors where stairs go either one or two levels up, and m queries that consist of two
floors each.

• For each query, compute the total number of staircases used on all possible different routes
between the two queried floors modulo 109 + 7.

Solution

• The number of routes to climb up k floors is the kth Fibonacci number Fk .
• The total number of staircases used is Lk = Lk−1 + Lk−2 + Fk , where L0 = 0 and L1 = 1.

G: Genius Gamer
Problem Author: Niko Hastrich

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
correct

wrong-answer
timelimit
run-error
pending

G: Genius Gamer
Problem Author: Niko Hastrich

Problem
Given tiles with a color and a numerical value (without duplicates), decide wether they can be
partitioned into sets of size at least three that either

• share the same numerical value (group), or
• share the same colour and have consecutive numerical values (run).

Solution

• Solvable via dynamic programming.

DP[i][a][b][c][d] =
Is it possible to partition the pieces with value at most i , such that in the
first colour there ends a run of size a, in the second of size b, in the third
of size c, and in the last of size d with the tile of value i .

• For a, b, c and d only states {0, 1, 2, “≥ 3”} are interesting.
• Needs O(44 max(numerical value)) states, with amortized constant time transition.
• Due to small constraints alternative solutions possible (e.g. back-tracking, meet-in-the-middle).

G: Genius Gamer
Problem Author: Niko Hastrich

Problem
Given tiles with a color and a numerical value (without duplicates), decide wether they can be
partitioned into sets of size at least three that either

• share the same numerical value (group), or
• share the same colour and have consecutive numerical values (run).

Solution

• Solvable via dynamic programming.

DP[i][a][b][c][d] =
Is it possible to partition the pieces with value at most i , such that in the
first colour there ends a run of size a, in the second of size b, in the third
of size c, and in the last of size d with the tile of value i .

• For a, b, c and d only states {0, 1, 2, “≥ 3”} are interesting.
• Needs O(44 max(numerical value)) states, with amortized constant time transition.
• Due to small constraints alternative solutions possible (e.g. back-tracking, meet-in-the-middle).

H: Haggling over Hours
Problem Author: Felicia Lucke

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
pending

H: Haggling over Hours
Problem Author: Felicia Lucke

Problem
Given a set of intervals, what is the smallest number of intervals to delete if you want to reduce the
size of the maximum independent set (MIS) by at least 1.

Observation

• An inteval v in some MIS has the same number of intervals to the left of it in every MIS.

v

A

B

v

H: Haggling over Hours
Problem Author: Felicia Lucke

Problem
Given a set of intervals, what is the smallest number of intervals to delete if you want to reduce the
size of the maximum independent set (MIS) by at least 1.

Observation

• An inteval v in some MIS has the same number of intervals to the left of it in every MIS.

v

A

B

v

H: Haggling over Hours
Problem Author: Felicia Lucke

Problem
Given a set of intervals, what is the smallest number of intervals to delete if you want to reduce the
size of the maximum independent set (MIS) by at least 1.

Observation

• An inteval v in some MIS has the same number of intervals to the left of it in every MIS.

v

A

B

v

H: Haggling over Hours
Problem Author: Felicia Lucke

Step 1: Find all intervals contained in some MIS

• For interval v , let left(v) be the size of the MIS to the left of v , similar for right(v).
• Calculate left(v) and right(v) for all intervals using dynamic programming.
• All intervals where left(v)+1+right(v) is maximum are contained in a maximum independent set.

Observation

• For an interval v in an MIS, we say that pos(v) = left(v) +1.
• Two intervals at the same position are always intersecting.

H: Haggling over Hours
Problem Author: Felicia Lucke

Step 1: Find all intervals contained in some MIS

• For interval v , let left(v) be the size of the MIS to the left of v , similar for right(v).
• Calculate left(v) and right(v) for all intervals using dynamic programming.
• All intervals where left(v)+1+right(v) is maximum are contained in a maximum independent set.

Observation

• For an interval v in an MIS, we say that pos(v) = left(v) +1.
• Two intervals at the same position are always intersecting.

Step 2: construct Digraph

• One vertex per interval contained in some maximum independent set
• Add an arc (u, v) for vertices u and v if their corresponding intervals are at consecutive positions

and the intervals do not intersect.
• Add a source s and sink vertex t.

Every maximum independent set corresponds to an (s, t)-path in the graph. The size of a minimum
vertex cut is the solution.

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5

Step 2: construct Digraph

• One vertex per interval contained in some maximum independent set
• Add an arc (u, v) for vertices u and v if their corresponding intervals are at consecutive positions

and the intervals do not intersect.
• Add a source s and sink vertex t.

Every maximum independent set corresponds to an (s, t)-path in the graph. The size of a minimum
vertex cut is the solution.

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5

Step 2: construct Digraph

• One vertex per interval contained in some maximum independent set
• Add an arc (u, v) for vertices u and v if their corresponding intervals are at consecutive positions

and the intervals do not intersect.
• Add a source s and sink vertex t.

Every maximum independent set corresponds to an (s, t)-path in the graph. The size of a minimum
vertex cut is the solution.

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5

I: Impossible Install
Problem Author: Christopher Weyand

0 50 100 150 200 250 300
0

2

4

6

8

10
correct

wrong-answer
timelimit
run-error
pending

I: Impossible Install
Problem Author: Christopher Weyand

Problem
There are software projects and a DAG of dependencies between them. Software projects have
versions that specify weakly increasing bounds on the version of each dependency.

Pick a version for each project such that all dependencies are satisfied.

Solution

• Initialize all versions to 1.
• Repeatedly find a violated dependency and solve it by increasing the version of a project.
• A violation of a dependency where a depends on b is solved like this:

• vb < lva → increase vb
• vb > rva → increase va

• Runs in O(W log n) with W =
∑

p vp · dp being the amount of input.

Possible Pitfalls

• projects with 109 versions and no dependencies

I: Impossible Install
Problem Author: Christopher Weyand

Problem
There are software projects and a DAG of dependencies between them. Software projects have
versions that specify weakly increasing bounds on the version of each dependency.

Pick a version for each project such that all dependencies are satisfied.

Solution

• Initialize all versions to 1.
• Repeatedly find a violated dependency and solve it by increasing the version of a project.
• A violation of a dependency where a depends on b is solved like this:

• vb < lva → increase vb
• vb > rva → increase va

• Runs in O(W log n) with W =
∑

p vp · dp being the amount of input.

Possible Pitfalls

• projects with 109 versions and no dependencies

I: Impossible Install
Problem Author: Christopher Weyand

Problem
There are software projects and a DAG of dependencies between them. Software projects have
versions that specify weakly increasing bounds on the version of each dependency.

Pick a version for each project such that all dependencies are satisfied.

Solution

• Initialize all versions to 1.
• Repeatedly find a violated dependency and solve it by increasing the version of a project.
• A violation of a dependency where a depends on b is solved like this:

• vb < lva → increase vb
• vb > rva → increase va

• Runs in O(W log n) with W =
∑

p vp · dp being the amount of input.

Possible Pitfalls

• projects with 109 versions and no dependencies

J: Jog in the Fog
Problem Author: Philipp Fischbeck

0 50 100 150 200 250 300
0

2

4

6

8

10

12
correct

wrong-answer
timelimit
run-error
pending

J: Jog in the Fog
Problem Author: Philipp Fischbeck

Problem
Given an initial position (x , y) and a looping route of n cells (xi , yi) on a 2D grid, find the expected
time to reach someone running along the route if using the fastest strategy.

Solution

• Optimal strategy: reach the route as fast as possible, then run along the route in opposite
direction.

• Reaching the route: min1≤i≤n |x − xi | + |y − yi |

• Running along the route: 1
n

∑n
i=1

i−1
2 = n−1

4

J: Jog in the Fog
Problem Author: Philipp Fischbeck

Problem
Given an initial position (x , y) and a looping route of n cells (xi , yi) on a 2D grid, find the expected
time to reach someone running along the route if using the fastest strategy.

Solution

• Optimal strategy: reach the route as fast as possible, then run along the route in opposite
direction.

• Reaching the route: min1≤i≤n |x − xi | + |y − yi |

• Running along the route: 1
n

∑n
i=1

i−1
2 = n−1

4

K: Keeping Keys
Problem Author: Brutenis Gliwa

0 50 100 150 200 250 300
0

5

10

15

20

25

30

correct
wrong-answer
timelimit
run-error
pending

K: Keeping Keys
Problem Author: Brutenis Gliwa

Problem
Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or
spaces when you are allowed to hold keys?

Solution

• Handle SHIFT and the letters a-z of the keyboard separately:
• SHIFT: remove spaces, replace a repeating capital letter with a single capital letter
• a-z : .to lower() everything, replace repeating letters with a single letter
• Print sum of resulting string lengths.

K: Keeping Keys
Problem Author: Brutenis Gliwa

Problem
Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or
spaces when you are allowed to hold keys?

Solution

• Handle SHIFT and the letters a-z of the keyboard separately:

• SHIFT: remove spaces, replace a repeating capital letter with a single capital letter
• a-z : .to lower() everything, replace repeating letters with a single letter
• Print sum of resulting string lengths.

K: Keeping Keys
Problem Author: Brutenis Gliwa

Problem
Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or
spaces when you are allowed to hold keys?

Solution

• Handle SHIFT and the letters a-z of the keyboard separately:
• SHIFT: remove spaces, replace a repeating capital letter with a single capital letter

• a-z : .to lower() everything, replace repeating letters with a single letter
• Print sum of resulting string lengths.

K: Keeping Keys
Problem Author: Brutenis Gliwa

Problem
Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or
spaces when you are allowed to hold keys?

Solution

• Handle SHIFT and the letters a-z of the keyboard separately:
• SHIFT: remove spaces, replace a repeating capital letter with a single capital letter
• a-z : .to lower() everything, replace repeating letters with a single letter

• Print sum of resulting string lengths.

K: Keeping Keys
Problem Author: Brutenis Gliwa

Problem
Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or
spaces when you are allowed to hold keys?

Solution

• Handle SHIFT and the letters a-z of the keyboard separately:
• SHIFT: remove spaces, replace a repeating capital letter with a single capital letter
• a-z : .to lower() everything, replace repeating letters with a single letter
• Print sum of resulting string lengths.

L: Lookup Table Tennis
Problem Author: Paul Wild

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
correct

wrong-answer
timelimit
run-error
pending

L: Lookup Table Tennis
Problem Author: Paul Wild

Problem
Locate a point p0 = (x0, y0, z0) in the 3D region [0, n] × [0, n] × [0, n] using queries of the form

Is p0 within distance
√

s of the point p = (x , y , z)?

All numbers in the input and output are integers.

Solution 1 – Binary Search

• Pick three arbitrary points and use binary search to find their distances to p0.
• Intersect the three spheres and query the (at most 2) intersection points.
• Can be made easier by picking suitable points (e.g. three corners of the area).

Solution 2 – Shrinking Bounding Box

• Create a ball whose diameter is half the diameter of the bounding box.
• Place it at random positions in the bounding box until it contains p0.
• Shrink the bounding box to the query ball. Repeat.

L: Lookup Table Tennis
Problem Author: Paul Wild

Problem
Locate a point p0 = (x0, y0, z0) in the 3D region [0, n] × [0, n] × [0, n] using queries of the form

Is p0 within distance
√

s of the point p = (x , y , z)?

All numbers in the input and output are integers.

Solution 1 – Binary Search

• Pick three arbitrary points and use binary search to find their distances to p0.
• Intersect the three spheres and query the (at most 2) intersection points.
• Can be made easier by picking suitable points (e.g. three corners of the area).

Solution 2 – Shrinking Bounding Box

• Create a ball whose diameter is half the diameter of the bounding box.
• Place it at random positions in the bounding box until it contains p0.
• Shrink the bounding box to the query ball. Repeat.

L: Lookup Table Tennis
Problem Author: Paul Wild

Problem
Locate a point p0 = (x0, y0, z0) in the 3D region [0, n] × [0, n] × [0, n] using queries of the form

Is p0 within distance
√

s of the point p = (x , y , z)?

All numbers in the input and output are integers.

Solution 1 – Binary Search

• Pick three arbitrary points and use binary search to find their distances to p0.
• Intersect the three spheres and query the (at most 2) intersection points.
• Can be made easier by picking suitable points (e.g. three corners of the area).

Solution 2 – Shrinking Bounding Box

• Create a ball whose diameter is half the diameter of the bounding box.
• Place it at random positions in the bounding box until it contains p0.
• Shrink the bounding box to the query ball. Repeat.

M: Montage Matrix
Problem Author: Florian Kothmeier

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35 correct
wrong-answer
timelimit
run-error
pending

M: Montage Matrix
Problem Author: Florian Kothmeier

Problem
Arrange n people in w columns for a photo.
Constraint: Only people with lower height hi may stand in front of others.

Solution 1 – Construct Arrangement

• Sort heights from tallest to smallest and rearrange into w × n
w grid

• For each entry, check that hi,j > hi,j+1

• Alternatively: Use only a single row, and replace items when processed
⇒ Runtime O(n · log(n)).

Solution 2 – Count Occurrences

• Constraint only fails if the person standing in front has the same height.
• This is only possible, when there are more than w people with the same height.
⇒ Can be computed in O(n) by using HashMaps.
• Beware of off-by-one errors, e.g. exactly w people with the same height.

M: Montage Matrix
Problem Author: Florian Kothmeier

Problem
Arrange n people in w columns for a photo.
Constraint: Only people with lower height hi may stand in front of others.

Solution 1 – Construct Arrangement

• Sort heights from tallest to smallest and rearrange into w × n
w grid

• For each entry, check that hi,j > hi,j+1

• Alternatively: Use only a single row, and replace items when processed
⇒ Runtime O(n · log(n)).

Solution 2 – Count Occurrences

• Constraint only fails if the person standing in front has the same height.
• This is only possible, when there are more than w people with the same height.
⇒ Can be computed in O(n) by using HashMaps.
• Beware of off-by-one errors, e.g. exactly w people with the same height.

M: Montage Matrix
Problem Author: Florian Kothmeier

Problem
Arrange n people in w columns for a photo.
Constraint: Only people with lower height hi may stand in front of others.

Solution 1 – Construct Arrangement

• Sort heights from tallest to smallest and rearrange into w × n
w grid

• For each entry, check that hi,j > hi,j+1

• Alternatively: Use only a single row, and replace items when processed
⇒ Runtime O(n · log(n)).

Solution 2 – Count Occurrences

• Constraint only fails if the person standing in front has the same height.
• This is only possible, when there are more than w people with the same height.
⇒ Can be computed in O(n) by using HashMaps.
• Beware of off-by-one errors, e.g. exactly w people with the same height.

Language stats

C C++ Haskell Java Python3
0

50

100

150

200

250

300 correct
wrong-answer
timelimit
run-error
pending

Random facts

Jury work

• 350 commits

• 691 secret test cases (≈ 53 per problem)
• 121 jury solutions
• The minimum number of lines the jury needed to solve all problems is

1 + 43 + 25 + 5 + 1 + 12 + 20 + 43 + 48 + 6 + 5 + 8 + 3 = 220

On average 16.9 lines per problem

Random facts

Jury work

• 350 commits
• 691 secret test cases (≈ 53 per problem)

• 121 jury solutions
• The minimum number of lines the jury needed to solve all problems is

1 + 43 + 25 + 5 + 1 + 12 + 20 + 43 + 48 + 6 + 5 + 8 + 3 = 220

On average 16.9 lines per problem

Random facts

Jury work

• 350 commits
• 691 secret test cases (≈ 53 per problem)
• 121 jury solutions

• The minimum number of lines the jury needed to solve all problems is

1 + 43 + 25 + 5 + 1 + 12 + 20 + 43 + 48 + 6 + 5 + 8 + 3 = 220

On average 16.9 lines per problem

Random facts

Jury work

• 350 commits
• 691 secret test cases (≈ 53 per problem)
• 121 jury solutions
• The minimum number of lines the jury needed to solve all problems is

1 + 43 + 25 + 5 + 1 + 12 + 20 + 43 + 48 + 6 + 5 + 8 + 3 = 220

On average 16.9 lines per problem

