Winter Contest 2024 Presentation of Solutions

The Winter Contest Jury
January 29, 2024

- Philipp Fischbeck

Hasso-Plattner-Institute Potsdam

- Rudolf Fleischer

Heinrich-Heine-University Düsseldorf, CPUlm

- Brutenis Gliwa

University of Rostock

- Niko Hastrich

Hasso-Plattner-Institute Potsdam

- Florian Kothmeier

Friedrich-Alexander University
Erlangen-Nürnberg

- Felicia Lucke

Fribourg University CH, CPUIm

- Jannik Olbrich

Ulm University, CPUlm

- Erik Sünderhauf

Technical University of Munich

- Christopher Weyand

Karlsruhe Institute of Technology, CPUIm

- Paul Wild

Friedrich-Alexander University
Erlangen-Nürnberg, CPUIm

- Wendy Yi

Karlsruhe Institute of Technology

- Michael Zündorf

Karlsruhe Institute of Technology, CPUIm

Winter Contest 2024 Test Solvers

- Sebastian Angrick

Hasso-Plattner-Institute Potsdam

- Michael Ruderer

Augsburg University, CPUIm

- Jonas Schmidt

Hasso-Plattner-Institute Potsdam

Winter Contest 2024 Technical Team

- Nathan Maier

CPUIm

- Alexander Schmid

CPUIm

- Pascal Weber

University of Vienna, CPUlm

A: Alphabetical Athletes

Problem Author: Felicia Lucke

A: Alphabetical Athletes

Problem Author: Felicia Lucke

Problem

Given a German word, check if its letters are lexicographically sorted (increasing or decreasing).

A: Alphabetical Athletes

Problem Author: Felicia Lucke

Problem

Given a German word, check if its letters are lexicographically sorted (increasing or decreasing).
Solution

- Sort the word and check if it is equal to the input or the reversed input.

A: Alphabetical Athletes

Problem Author: Felicia Lucke

Problem

Given a German word, check if its letters are lexicographically sorted (increasing or decreasing).

Solution

- Sort the word and check if it is equal to the input or the reversed input.

Possible Pitfalls

- The first letter may be capitalized.
- Reversed alphabetical order is considered sorted.
- Did not test all samples.

B: Bright Beacons

Problem Author: Brutenis Gliwa

B: Bright Beacons

Problem Author: Brutenis Gliwa

Problem

Given a grid of mountain heights, what is the shortest path from the top-left to the bottom-right when adjacency is determined by line-of-sight between mountains?

B: Bright Beacons

Problem Author: Brutenis Gliwa

Problem

Given a grid of mountain heights, what is the shortest path from the top-left to the bottom-right when adjacency is determined by line-of-sight between mountains?

Solution

- Compute line of sight function $f(x): a x+b$ for each pair of mountains along the same row or column ($f(x)$ crosses both peaks).
- There is no line of sight if any mountain in between is higher than $f(x)$ at that position.
- Create a graph: each mountain is a node, add edge between mountains if there is a line of sight.
- Traverse graph with breadth-first-search.

C: Chess Challenge

Problem Author: Wendy Yi

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most. Find a capture sequence (if possible) such that there is only one rook left in the end.

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

Solution

- Check total number of moves.

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

Solution

- Check total number of moves.
- Process rooks from left to right using a stack.

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

Solution

- Check total number of moves.
- Process rooks from left to right using a stack.

1. While 0 -rook on stack, new non-0-rook: new rook takes rook on stack

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

Solution

- Check total number of moves.
- Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

Solution

- Check total number of moves.
- Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

C: Chess Challenge

Problem Author: Wendy Yi

Problem

There is a 1D chess board with r rooks. Each rook has a number of captures it can make at most.
Find a capture sequence (if possible) such that there is only one rook left in the end.

Observations

- It is possible if and only if total number of allowed moves $\geq r-1$.
- If a rook with 0 moves left can be captured by a neighbour, capturing it does not change solvability.

Solution

- Check total number of moves.
- Process rooks from left to right using a stack.

1. While 0-rook on stack, new non-0-rook: new rook takes rook on stack
2. While non-0-rook on stack, new 0-rook: rook on stack takes new rook
3. Else: push new rook on stack

- If no rooks with 0 moves left, repeatedly capture leftmost rook.

D: Devious Dates
Problem Author: Jannik Olbrich

D: Devious Dates

Problem Author: Jannik Olbrich

Problem

Given three integers a, m and k. Find k distinct pairs of integers $\left(a_{i}, m_{i}\right)$, such that for each i there are x_{i}, y_{i} such that

$$
\begin{aligned}
a & =a_{i}+x_{i} \cdot m_{i} \\
a+m & =a_{i}+y_{i} \cdot m_{i}
\end{aligned}
$$

D: Devious Dates

Problem Author: Jannik Olbrich

Problem

Given three integers a, m and k. Find k distinct pairs of integers $\left(a_{i}, m_{i}\right)$, such that for each i there are x_{i}, y_{i} such that

$$
\begin{aligned}
a & =a_{i}+x_{i} \cdot m_{i} \\
a+m & =a_{i}+y_{i} \cdot m_{i}
\end{aligned}
$$

Solution

- From subtracting the two equations, we know that m_{i} must divide $(a+m)-a=m$.
- Once m_{i} is known, the smallest a_{i} is a mod m_{i}.
- Two schedules $\left(a_{i}, m_{i}\right),\left(a_{j}, m_{j}\right)$ are different iff $m_{i} \neq m_{j}$.
\Longrightarrow There are exactly as many different schedules as there are divisors of m.
\Longrightarrow Find all divisors of m, print "impossible" if there are fewer than k, otherwise choose k divisors as m_{i} 's (whose lcm is m) and print them.
- Time complexity: $\mathcal{O}(\sqrt{m})$

E: Euroexpress

Problem Author: Michael Zündorf

E: Euroexpress

Problem Author: Michael Zündorf

Problem

Given n rectangles $\left(w_{i}, h_{i}\right)$, find the largest box where each side can be covered by one of the rectangles.

Problem Author: Michael Zündorf

Solution

- All sides of the largest box can always be covered with the same rectangle.
- For a given rectangle, the largest box has size $w \times h \times \min (w, h)$.
- Try all rectangles and take the maximum over all.
\Rightarrow Runtime: $\mathcal{O}(n)$

F: Football Figurines

Problem Author: Rudolf Fleischer

F: Football Figurines

Problem Author: Rudolf Fleischer

Problem

- Given are n floors where stairs go either one or two levels up, and m queries that consist of two floors each.
- For each query, compute the total number of staircases used on all possible different routes between the two queried floors modulo $10^{9}+7$.

F: Football Figurines

Problem Author: Rudolf Fleischer

Problem

- Given are n floors where stairs go either one or two levels up, and m queries that consist of two floors each.
- For each query, compute the total number of staircases used on all possible different routes between the two queried floors modulo $10^{9}+7$.

Solution

- The number of routes to climb up k floors is the k th Fibonacci number F_{k}.
- The total number of staircases used is $L_{k}=L_{k-1}+L_{k-2}+F_{k}$, where $L_{0}=0$ and $L_{1}=1$.

G: Genius Gamer

Problem Author: Niko Hastrich

G: Genius Gamer

Problem Author: Niko Hastrich

Problem

Given tiles with a color and a numerical value (without duplicates), decide wether they can be partitioned into sets of size at least three that either

- share the same numerical value (group), or
- share the same colour and have consecutive numerical values (run).

G: Genius Gamer

Problem Author: Niko Hastrich

Problem

Given tiles with a color and a numerical value (without duplicates), decide wether they can be partitioned into sets of size at least three that either

- share the same numerical value (group), or
- share the same colour and have consecutive numerical values (run).

Solution

- Solvable via dynamic programming.

Is it possible to partition the pieces with value at most i, such that in the $D P[i][a][b][c][d]=$ first colour there ends a run of size a, in the second of size b, in the third of size c, and in the last of size d with the tile of value i.

- For a, b, c and d only states $\{0,1,2, " \geq 3$ " $\}$ are interesting.
- Needs $\mathcal{O}\left(4^{4} \max (\right.$ numerical value $\left.)\right)$ states, with amortized constant time transition.
- Due to small constraints alternative solutions possible (e.g. back-tracking, meet-in-the-middle).

H: Haggling over Hours

Problem Author: Felicia Lucke

H: Haggling over Hours

Problem Author: Felicia Lucke

Problem

Given a set of intervals, what is the smallest number of intervals to delete if you want to reduce the size of the maximum independent set (MIS) by at least 1 .

H: Haggling over Hours

Problem Author: Felicia Lucke

Problem

Given a set of intervals, what is the smallest number of intervals to delete if you want to reduce the size of the maximum independent set (MIS) by at least 1 .

Observation

- An inteval v in some MIS has the same number of intervals to the left of it in every MIS.

H: Haggling over Hours

Problem Author: Felicia Lucke

Problem

Given a set of intervals, what is the smallest number of intervals to delete if you want to reduce the size of the maximum independent set (MIS) by at least 1 .

Observation

- An inteval v in some MIS has the same number of intervals to the left of it in every MIS.

H: Haggling over Hours

Problem Author: Felicia Lucke

Step 1: Find all intervals contained in some MIS

- For interval v, let left (v) be the size of the MIS to the left of v, similar for right (v).
- Calculate left (v) and $\operatorname{right}(v)$ for all intervals using dynamic programming.
- All intervals where left $(v)+1+\operatorname{right}(v)$ is maximum are contained in a maximum independent set.

H: Haggling over Hours

Problem Author: Felicia Lucke

Step 1: Find all intervals contained in some MIS

- For interval v, let left (v) be the size of the MIS to the left of v, similar for right (v).
- Calculate left (v) and right (v) for all intervals using dynamic programming.
- All intervals where left $(v)+1+\operatorname{right}(v)$ is maximum are contained in a maximum independent set.

Observation

- For an interval v in an MIS, we say that $\operatorname{pos}(v)=\operatorname{left}(v)+1$.
- Two intervals at the same position are always intersecting.

Step 2: construct Digraph

- One vertex per interval contained in some maximum independent set
- Add an arc (u, v) for vertices u and v if their corresponding intervals are at consecutive positions and the intervals do not intersect.
- Add a source s and sink vertex t.

Every maximum independent set corresponds to an (s, t)-path in the graph. The size of a minimum vertex cut is the solution.


```
Pos. }1\mathrm{ Pos. 2 Pos. }3\mathrm{ Pos. }4\mathrm{ Pos. 5
```


Step 2: construct Digraph

- One vertex per interval contained in some maximum independent set
- Add an arc (u, v) for vertices u and v if their corresponding intervals are at consecutive positions and the intervals do not intersect.
- Add a source s and sink vertex t.

Every maximum independent set corresponds to an (s, t)-path in the graph. The size of a minimum vertex cut is the solution.

Step 2: construct Digraph

- One vertex per interval contained in some maximum independent set
- Add an arc (u, v) for vertices u and v if their corresponding intervals are at consecutive positions and the intervals do not intersect.
- Add a source s and sink vertex t.

Every maximum independent set corresponds to an (s, t)-path in the graph. The size of a minimum vertex cut is the solution.

I: Impossible Install

Problem Author: Christopher Weyand

I: Impossible Install
Problem Author: Christopher Weyand

Problem

There are software projects and a DAG of dependencies between them. Software projects have versions that specify weakly increasing bounds on the version of each dependency.

Pick a version for each project such that all dependencies are satisfied.

I: Impossible Install
Problem Author: Christopher Weyand

Problem

There are software projects and a DAG of dependencies between them. Software projects have versions that specify weakly increasing bounds on the version of each dependency.

Pick a version for each project such that all dependencies are satisfied.

Solution

- Initialize all versions to 1.
- Repeatedly find a violated dependency and solve it by increasing the version of a project.
- A violation of a dependency where a depends on b is solved like this:
- $v_{b}<I_{v_{a}} \rightarrow$ increase v_{b}
- $v_{b}>r_{v_{a}} \rightarrow$ increase v_{a}
- Runs in $O(W \log n)$ with $W=\sum_{p} v_{p} \cdot d_{p}$ being the amount of input.

I: Impossible Install
Problem Author: Christopher Weyand

Problem

There are software projects and a DAG of dependencies between them. Software projects have versions that specify weakly increasing bounds on the version of each dependency.

Pick a version for each project such that all dependencies are satisfied.

Solution

- Initialize all versions to 1.
- Repeatedly find a violated dependency and solve it by increasing the version of a project.
- A violation of a dependency where a depends on b is solved like this:
- $v_{b}<I_{v_{a}} \rightarrow$ increase v_{b}
- $v_{b}>r_{v_{a}} \rightarrow$ increase v_{a}
- Runs in $O(W \log n)$ with $W=\sum_{p} v_{p} \cdot d_{p}$ being the amount of input.

Possible Pitfalls

- projects with 10^{9} versions and no dependencies

J: Jog in the Fog

Problem Author: Philipp Fischbeck

J: Jog in the Fog

Problem Author: Philipp Fischbeck

Problem

Given an initial position (x, y) and a looping route of n cells $\left(x_{i}, y_{i}\right)$ on a 2D grid, find the expected time to reach someone running along the route if using the fastest strategy.

J: Jog in the Fog

Problem Author: Philipp Fischbeck

Problem

Given an initial position (x, y) and a looping route of n cells $\left(x_{i}, y_{i}\right)$ on a 2D grid, find the expected time to reach someone running along the route if using the fastest strategy.

Solution

- Optimal strategy: reach the route as fast as possible, then run along the route in opposite direction.
- Reaching the route: $\min _{1 \leq i \leq n}\left|x-x_{i}\right|+\left|y-y_{i}\right|$
- Running along the route: $\frac{1}{n} \sum_{i=1}^{n} \frac{i-1}{2}=\frac{n-1}{4}$

K: Keeping Keys

Problem Author: Brutenis Gliwa

K: Keeping Keys

Problem Author: Brutenis Gliwa

Problem

Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, $A-Z$ or spaces when you are allowed to hold keys?

K: Keeping Keys

Problem Author: Brutenis Gliwa

Problem

Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, $A-Z$ or spaces when you are allowed to hold keys?

Solution

- Handle SHIFT and the letters $\mathbf{a - z}$. of the keyboard separately:

K: Keeping Keys

Problem Author: Brutenis Gliwa

Problem

Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, $A-Z$ or spaces when you are allowed to hold keys?

Solution

- Handle SHIFT and the letters $\mathbf{a - z}$. of the keyboard separately:
- SHIFT: remove spaces, replace a repeating capital letter with a single capital letter

K: Keeping Keys

Problem Author: Brutenis Gliwa

Problem

Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or spaces when you are allowed to hold keys?

Solution

- Handle SHIFT and the letters $\mathbf{a - z}$. of the keyboard separately:
- SHIFT: remove spaces, replace a repeating capital letter with a single capital letter
- a-z_: .to_lower() everything, replace repeating letters with a single letter

K: Keeping Keys

Problem Author: Brutenis Gliwa

Problem

Pressing a keyboard key costs 1 cent. What is the cost of printing a text consisting of a-z, A-Z or spaces when you are allowed to hold keys?

Solution

- Handle SHIFT and the letters $\mathbf{a - z}$. of the keyboard separately:
- SHIFT: remove spaces, replace a repeating capital letter with a single capital letter
- a-z_: .to_lower() everything, replace repeating letters with a single letter
- Print sum of resulting string lengths.

L: Lookup Table Tennis

Problem Author: Paul Wild

L: Lookup Table Tennis

Problem Author: Paul Wild

Problem

Locate a point $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the 3 D region $[0, n] \times[0, n] \times[0, n]$ using queries of the form Is p_{0} within distance \sqrt{s} of the point $p=(x, y, z)$?

All numbers in the input and output are integers.

L: Lookup Table Tennis

Problem Author: Paul Wild

Problem

Locate a point $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the 3 D region $[0, n] \times[0, n] \times[0, n]$ using queries of the form Is p_{0} within distance \sqrt{s} of the point $p=(x, y, z)$?

All numbers in the input and output are integers.

Solution 1 - Binary Search

- Pick three arbitrary points and use binary search to find their distances to p_{0}.
- Intersect the three spheres and query the (at most 2) intersection points.
- Can be made easier by picking suitable points (e.g. three corners of the area).

L: Lookup Table Tennis

Problem Author: Paul Wild

Problem

Locate a point $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the 3 D region $[0, n] \times[0, n] \times[0, n]$ using queries of the form Is p_{0} within distance \sqrt{s} of the point $p=(x, y, z)$?

All numbers in the input and output are integers.

Solution 1 - Binary Search

- Pick three arbitrary points and use binary search to find their distances to p_{0}.
- Intersect the three spheres and query the (at most 2) intersection points.
- Can be made easier by picking suitable points (e.g. three corners of the area).

Solution 2 - Shrinking Bounding Box

- Create a ball whose diameter is half the diameter of the bounding box.
- Place it at random positions in the bounding box until it contains p_{0}.
- Shrink the bounding box to the query ball. Repeat.

M: Montage Matrix
Problem Author: Florian Kothmeier

M: Montage Matrix

Problem Author: Florian Kothmeier

Problem

Arrange n people in w columns for a photo.
Constraint: Only people with lower height h_{i} may stand in front of others.

M: Montage Matrix

Problem Author: Florian Kothmeier

Problem

Arrange n people in w columns for a photo.
Constraint: Only people with lower height h_{i} may stand in front of others.

Solution 1 - Construct Arrangement

- Sort heights from tallest to smallest and rearrange into $w \times \frac{n}{w}$ grid
- For each entry, check that $h_{i, j}>h_{i, j+1}$
- Alternatively: Use only a single row, and replace items when processed
\Rightarrow Runtime $O(n \cdot \log (n))$.

M: Montage Matrix

Problem Author: Florian Kothmeier

Problem

Arrange n people in w columns for a photo.
Constraint: Only people with lower height h_{i} may stand in front of others.

Solution 1 - Construct Arrangement

- Sort heights from tallest to smallest and rearrange into $w \times \frac{n}{w}$ grid
- For each entry, check that $h_{i, j}>h_{i, j+1}$
- Alternatively: Use only a single row, and replace items when processed
\Rightarrow Runtime $O(n \cdot \log (n))$.

Solution 2 - Count Occurrences

- Constraint only fails if the person standing in front has the same height.
- This is only possible, when there are more than w people with the same height.
\Rightarrow Can be computed in $O(n)$ by using HashMaps.
- Beware of off-by-one errors, e.g. exactly w people with the same height.

Language stats

Random facts

Jury work

- 350 commits

Random facts

Jury work

- 350 commits
- 691 secret test cases (≈ 53 per problem)

Random facts

Jury work

- 350 commits
- 691 secret test cases (≈ 53 per problem)
- 121 jury solutions

Random facts

Jury work

- 350 commits
- 691 secret test cases (≈ 53 per problem)
- 121 jury solutions
- The minimum number of lines the jury needed to solve all problems is

$$
1+43+25+5+1+12+20+43+48+6+5+8+3=220
$$

On average 16.9 lines per problem

